Difference between revisions of "MediaWiki:Gadget-calculator-anatomyPhysiology.js"

From WikiAnesthesia
 
(45 intermediate revisions by the same user not shown)
Line 1: Line 1:
( function() {
( function() {
    var moduleId = 'anatomyPhysiology';
     mw.calculators.addUnitsBases( {
     mw.calculators.addUnitsBases( {
         bpm: {
         bpm: {
Line 13: Line 11:
             toString: function( units ) {
             toString: function( units ) {
                 units = units.replace( 'hgbperdL', '/dL' );
                 units = units.replace( 'hgbperdL', '/dL' );
                 units = units.replace( 'pcthct', '%' );
                 units = units.replace( /\s?pcthct/, '%' );


                 return units;
                 return units;
Line 20: Line 18:
         o2: {
         o2: {
             toString: function( units ) {
             toString: function( units ) {
                 units = units.replace( 'pcto2', '%' );
                units = units.replace( /\s?pcto2/, '%' );
 
                return units;
            }
        },
        temperature: {
            toString: function( units ) {
                 units = units.replace( 'deg', '°' );


                 return units;
                 return units;
Line 29: Line 34:
     mw.calculators.addUnits( {
     mw.calculators.addUnits( {
         bpm: {
         bpm: {
             basename: 'bpm'
             baseName: 'bpm'
         },
         },
         pcthct: {
         pcthct: {
Line 45: Line 50:


     mw.calculators.addVariables( {
     mw.calculators.addVariables( {
         caseDuration: {
         fiO2: {
             name: 'Case duration',
             name: 'FiO<sub>2</sub>',
             type: 'number',
             type: 'number',
             abbreviation: 'Duration',
             abbreviation: 'FiO<sub>2</sub>',
            minValue: '10 pcto2',
            maxValue: '100 pcto2',
            defaultValue: '21 pcto2',
             maxLength: 3,
             maxLength: 3,
             units: [
             units: [
                 'hr',
                 'pcto2'
                'min'
            ]
        },
        hct: {
            name: 'Current hematocrit',
            type: 'number',
            abbreviation: 'Current hct',
            defaultValue: '45 pcthct',
            maxLength: 4,
            units: [
                'pcthct',
                'ghgbperdL'
             ]
             ]
         },
         },
Line 77: Line 73:
         },
         },
         hgb: {
         hgb: {
             name: 'Hemoglobin',
             name: 'Hemoglobin/hematocrit',
             type: 'number',
             type: 'number',
             abbreviation: 'HgB',
             abbreviation: 'HgB',
            minValue: '3 ghgbperdL',
            maxValue: '25 ghgbperdL',
             defaultValue: '13 ghgbperdL',
             defaultValue: '13 ghgbperdL',
             maxLength: 4,
             maxLength: 4,
Line 87: Line 85:
             ]
             ]
         },
         },
         minHct: {
         paCO2: {
             name: 'Minimum hematocrit',
             name: 'PaCO<sub>2</sub>',
             type: 'number',
             type: 'number',
             abbreviation: 'Min hct',
             abbreviation: 'PaCO<sub>2</sub>',
             defaultValue: '21 pcthct',
            minValue: '20 mmHg',
             maxLength: 4,
             defaultValue: '40 mmHg',
             maxLength: 3,
             units: [
             units: [
                 'pcthct',
                 'mmHg'
                'ghgbperdL'
             ]
             ]
         },
         },
         paCO2: {
         paO2: {
             name: 'PaCO<sub>2</sub>',
             name: 'PaO<sub>2</sub>',
             type: 'number',
             type: 'number',
             abbreviation: 'PaCO<sub>2</sub>',
             abbreviation: 'PaO<sub>2</sub>',
             defaultValue: '40 mmHg',
            minValue: '25 mmHg',
             defaultValue: '100 mmHg',
             maxLength: 3,
             maxLength: 3,
            units: [
                'mmHg'
            ]
        },
        pAtm: {
            name: 'Atmospheric pressure',
            type: 'number',
            abbreviation: 'P<sub>atm</sub>',
            minValue: '0 mmHg',
            defaultValue: '760 mmHg',
            maxLength: 4,
             units: [
             units: [
                 'mmHg'
                 'mmHg'
Line 112: Line 122:
             type: 'number',
             type: 'number',
             abbreviation: 'SaO<sub>2</sub>',
             abbreviation: 'SaO<sub>2</sub>',
            minValue: '25 pcto2',
            maxValue: '100 pcto2',
             defaultValue: '100 pcto2',
             defaultValue: '100 pcto2',
             maxLength: 3,
             maxLength: 3,
Line 122: Line 134:
             type: 'number',
             type: 'number',
             abbreviation: 'SmvO<sub>2</sub>',
             abbreviation: 'SmvO<sub>2</sub>',
            minValue: '25 pcto2',
            maxValue: '100 pcto2',
             defaultValue: '75 pcto2',
             defaultValue: '75 pcto2',
             maxLength: 3,
             maxLength: 3,
Line 128: Line 142:
             ]
             ]
         },
         },
         npoTime: {
         raceSpirometry: {
             name: 'Time spent NPO',
             name: 'Race',
            type: 'string',
            abbreviation: 'Race',
            defaultValue: 'unknown',
            options: {
                unknown: 'Unknown',
                black: 'Black',
                caucasian: 'Caucasian',
                mexican: 'Mexican-American'
            }
        },
        temperature: {
            name: 'Temperature',
             type: 'number',
             type: 'number',
             abbreviation: 'NPO time',
             abbreviation: 'Temp',
             defaultValue: '8 hr',
            minValue: '20 degC',
            maxValue: '44 degC',
            defaultValue: '37 degC',
            maxLength: 5,
            units: [
                'degC',
                'degF'
            ]
        },
        weightBasedTidalVolumePerKgMin: {
            name: 'Minimum tidal volume',
            type: 'number',
            abbreviation: 'Min TV',
            minValue: '3 mL/kgwt',
            maxValue: '12 mL/kgwt',
             defaultValue: '6 mL/kgwt',
             maxLength: 2,
             maxLength: 2,
             units: [
             units: [
                 'hr'
                 'mL/kgwt'
             ]
             ]
         },
         },
         surgicalTrauma: {
         weightBasedTidalVolumePerKgMax: {
             name: 'Severity of surgical trauma',
             name: 'Maximum tidal volume',
             type: 'string',
             type: 'number',
             abbreviation: 'Surgical trauma',
             abbreviation: 'Max TV',
             defaultValue: 'Minimal',
             minValue: '3 mL/kgwt',
             options: [
             maxValue: '12 mL/kgwt',
                'Minimal',
            defaultValue: '8 mL/kgwt',
                'Moderate',
            maxLength: 2,
                 'Severe'
            units: [
                 'mL/kgwt'
             ]
             ]
         }
         }
     } );
     } );


 
    // Force re-render of ibw and lbw. This is necessary to remove the additional inputs for patient variables from the
    // calculation which are now provided by the patient input toolbar.
    mw.calculators.calculations.ibw.render();
    mw.calculators.calculations.lbw.render();


     mw.calculators.addCalculations( {
     mw.calculators.addCalculations( {
Line 164: Line 209:
             digits: 0,
             digits: 0,
             units: 'kg/m^2',
             units: 'kg/m^2',
             formula: '<math>\\mathrm{BMI} = \\frac{\\mathrm{mass_{kg}}}{{\\mathrm{height_{m}}}^2}</math>',
             formula: '<math>\\mathrm{BMI} = \\frac{\\mathrm{mass_{kg}}}{{(\\mathrm{height_{m}}})^2}</math>',
             link: '[[Body mass index]]',
             link: '[[Body mass index]]',
             references: [],
             references: [],
Line 188: Line 233:
             calculate: function( data ) {
             calculate: function( data ) {
                 return Math.sqrt( data.height.toNumber( 'cm' ) * data.weight.toNumber( 'kgwt' ) / 3600 );
                 return Math.sqrt( data.height.toNumber( 'cm' ) * data.weight.toNumber( 'kgwt' ) / 3600 );
            }
        },
        ebv: {
            name: 'Estimated blood volume',
            abbreviation: 'EBV',
            data: {
                variables: {
                    required: [ 'weight', 'age' ]
                }
            },
            digits: 0,
            units: 'mL',
            formula: '',
            references: [
                'Morgan & Mikhail\'s Clinical Anesthesiology. 5e. p1168'
            ],
            calculate: function( data ) {
                var weight = data.weight.toNumber( 'kgwt' );
                var age = data.age.toNumber( 'yo' );
                var ebvPerKg;
                if( age >= 1 ) {
                    if( data.gender === 'F' ) {
                        ebvPerKg = 65;
                    } else {
                        ebvPerKg = 75;
                    }
                } else if( age >= 1/12 ) {
                    ebvPerKg = 80;
                } else if( age >= 0 ) {
                    ebvPerKg = 85;
                } else {
                    ebvPerKg = 95;
                }
                return weight * ebvPerKg;
            }
        },
        fluidMaintenanceRate: {
            name: 'Fluid maintenance rate',
            abbreviation: 'Fluid maint.',
            data: {
                variables: {
                    required: [ 'weight' ]
                }
            },
            digits: 0,
            units: 'mL/hr',
            formula: '',
            references: [
                'Miller\'s Anesthesia 7e, section IV, pg. 1728'
            ],
            calculate: function( data ) {
                var weight = data.weight.toNumber( 'kgwt' );
                // Uses 4-2-1 rule
                var maintenanceRate = 4 * Math.min( weight, 10 );
                if( weight > 10 ) {
                    maintenanceRate += 2 * Math.min( weight - 10, 10 );
                }
                if( weight > 20) {
                    maintenanceRate += weight - 20;
                }
                return maintenanceRate;
            }
        },
        intraopFluids: {
            name: 'Intraoperative fluid dosing',
            abbreviation: 'Intraop fluids',
            data: {
                calculations: {
                    required: [ 'fluidMaintenanceRate' ]
                },
                variables: {
                    required: [ 'weight', 'npoTime', 'surgicalTrauma' ]
                }
            },
            type: 'string',
            references: [
                'Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg. 2012 Mar;114(3):640-51. doi: 10.1213/ANE.0b013e318240d6eb. Epub 2012 Jan 16. PMID: 22253274.'
            ],
            calculate: function( data ) {
                var weight = data.weight.toNumber( 'kgwt' );
                var maintenanceRate = data.fluidMaintenanceRate.toNumber( 'mL/hr' );
                var npoTime = data.npoTime.toNumber( 'hr' );
                var surgicalTrauma = data.surgicalTrauma;
                var output = '';
                var npoDeficit = npoTime * maintenanceRate;
                var surgicalLossMin, surgicalLossMax;
                if( surgicalTrauma === 'Minimal' ) {
                    surgicalLossMin = 2 * weight;
                    surgicalLossMax = 4 * weight;
                } else if( surgicalTrauma === 'Moderate' ) {
                    surgicalLossMin = 4 * weight;
                    surgicalLossMax = 6 * weight;
                } else {
                    surgicalLossMin = 6 * weight;
                    surgicalLossMax = 8 * weight;
                }
                var firstHour = Math.round( npoDeficit / 2 ) + maintenanceRate;
                var nextHoursMin = Math.round( npoDeficit / 4 ) + maintenanceRate + surgicalLossMin;
                var nextHoursMax = Math.round( npoDeficit / 4 ) + maintenanceRate + surgicalLossMax;
                var remainingHoursMin = maintenanceRate + surgicalLossMin;
                var remainingHoursMax = maintenanceRate + surgicalLossMax;
                output += 'NPO deficit: ' + Math.round( npoDeficit ) + ' mL<br/>';
                output += 'Surgical losses: ' + surgicalLossMin + '-' + surgicalLossMax + ' mL/hr<br/>';
                output += '1st hour: ' + firstHour + ' mL<br/>';
                output += '2nd hour: ' + nextHoursMin + '-' + nextHoursMax + ' mL<br/>';
                output += '3rd hour: ' + nextHoursMin + '-' + nextHoursMax + ' mL<br/>';
                output += '4+ hours: ' + remainingHoursMin + '-' + remainingHoursMax + ' mL<br/>';
                return output;
            }
        },
        maxAbl: {
            name: 'Maximum allowable blood loss',
            abbreviation: 'Max ABL',
            data: {
                calculations: {
                    required: [ 'ebv' ]
                },
                variables: {
                    required: [ 'weight', 'age', 'hct', 'minHct' ]
                }
            },
            digits: 0,
            units: 'mL',
            formula: '',
            references: [
                'Morgan & Mikhail\'s Clinical Anesthesiology. 5e. p1168'
            ],
            calculate: function( data ) {
                var currentHct = data.hct.toNumber( 'pcthct' );
                var minHct = data.minHct.toNumber( 'pcthct' );
                if( currentHct < minHct ) {
                    return '-';
                }
                return data.ebv.toNumber( 'mL' ) * ( currentHct - minHct ) / currentHct;
            }
        },
        minUop: {
            name: 'Minimum urine output',
            abbreviation: 'Min UOP',
            data: {
                variables: {
                    required: [ 'weight', 'age' ],
                    optional: [ 'caseDuration' ]
                }
            },
            type: 'string',
            formula: '',
            references: [
                'Klahr S, Miller SB. Acute oliguria. N Engl J Med. 1998 Mar 5;338(10):671-5. doi: 10.1056/NEJM199803053381007. PMID: 9486997.',
                'Arant BS Jr. Postnatal development of renal function during the first year of life. Pediatr Nephrol. 1987 Jul;1(3):308-13. doi: 10.1007/BF00849229. PMID: 3153294.'
            ],
            calculate: function( data ) {
                var weight = data.weight.toNumber( 'kgwt' );
                var age = data.age.toNumber( 'yo' );
                var caseDuration = data.caseDuration ? data.caseDuration.toNumber( 'hr' ) : null;
                var minUop;
                if( age > 1 ) {
                    minUop = 0.5 * weight;
                } else {
                    minUop = 1 * weight;
                }
                if( caseDuration ) {
                    minUop = minUop * caseDuration + ' mL';
                } else {
                    minUop = minUop + ' mL/hr';
                }
                return minUop;
             }
             }
         },
         },
Line 429: Line 287:
     mw.calculators.addCalculations( {
     mw.calculators.addCalculations( {
         vO2: {
         vO2: {
             name: 'VO<sub>2</sub>',
             name: 'Rate of oxygen consumption (VO<sub>2</sub>)',
             abbreviation: 'VO<sub>2</sub>',
             abbreviation: 'VO<sub>2</sub>',
             data: {
             data: {
Line 440: Line 298:
             },
             },
             units: 'mL/min',
             units: 'mL/min',
            formula: '<math>\\mathrm{VO_2} = \\begin{cases} 125 * \\mathrm{BSA}  & \\text{if age} < 70 \\\\ 110 * \\mathrm{BSA} & \\text{if age} \\geq 70 \\end{cases}</math>',
             references: [],
             references: [],
             calculate: function( data ) {
             calculate: function( data ) {
Line 445: Line 304:
                 var age = data.age ? data.age.toNumber( 'yr' ) : null;
                 var age = data.age ? data.age.toNumber( 'yr' ) : null;


                 if( age >= 70 ) {
                 if( age < 70 ) {
                    return 125 * bsa;
                } else {
                     return 110 * bsa;
                     return 110 * bsa;
                } else {
                    return 125 * bsa;
                 }
                 }
             }
             }
Line 464: Line 323:
             },
             },
             units: 'L/min',
             units: 'L/min',
             formula: '<math>\\mathrm{CO_{Fick}}=\\frac{VO_2}{(S_aO_2 - S_{mv}O_2) * H_b * 13.4}</math>',
             formula: '<math>\\mathrm{CO_{Fick}}=\\frac{\\mathrm{VO_2}}{(\\mathrm{S_aO_2} - \\mathrm{S_{mv}O_2}) * H_b * 13.4}</math>',
             link: false,
             link: false,
             references: [],
             references: [],
Line 530: Line 389:
             digits: 0,
             digits: 0,
             units: 'gwt',
             units: 'gwt',
            description: 'This calculation will give a more precise estimate of brain mass if age and/or gender are provided.',
             references: [
             references: [
                 'Dekaban AS. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978 Oct;4(4):345-56. doi: 10.1002/ana.410040410. PMID: 727739.'
                 'Dekaban AS. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978 Oct;4(4):345-56. doi: 10.1002/ana.410040410. PMID: 727739.'
Line 644: Line 504:
             description: '4 mL per 100g of brain mass',
             description: '4 mL per 100g of brain mass',
             references: [
             references: [
                 'Alifia Tameem, Hari Krovvidi, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001'
                 'Tameem A, Krovvidi H, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001'
             ],
             ],
             calculate: function( data ) {
             calculate: function( data ) {
Line 650: Line 510:


                 return 4 * brainMass / 100;
                 return 4 * brainMass / 100;
            }
        },
        cerebralMetabolicRateFactor: {
            name: 'Cerebral metabolic rate factor',
            abbreviation: '%CMR',
            data: {
                variables: {
                    optional: [ 'temperature' ]
                }
            },
            description: '7% change in CMR for every 1 &deg;C change in temperature',
            references: [
                'Tameem A, Krovvidi H, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001'
            ],
            calculate: function( data ) {
                var temperature = data.temperature ? data.temperature.toNumber( 'degC' ) : null;
                var cerebralMetabolicRateFactor = 1;
                if( temperature ) {
                    cerebralMetabolicRateFactor += 0.07 * ( temperature - 37 );
                }
                return cerebralMetabolicRateFactor;
            }
        },
        cerebralMetabolicRateO2: {
            name: 'Cerebral metabolic rate (O<sub>2</sub>)',
            abbreviation: 'CMRO<sub>2</sub>',
            data: {
                calculations: {
                    required: [ 'brainMass', 'cerebralMetabolicRateFactor' ]
                },
                variables: {
                    optional: [ 'temperature' ]
                }
            },
            units: 'mL/min',
            description: '<ul><li>3 mL O<sub>2</sub>/min per 100g of brain mass</li><li>If temperature is provided, adjusts estimate using 7% change in CMR for every 1 &deg;C change in temperature</li></ul>',
            references: [
                'Tameem A, Krovvidi H, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001'
            ],
            calculate: function( data ) {
                // Temperature is included as an optional variable to generate the input.
                // It is used by cerebralMetabolicRateFactor, which is an internal calculation not typically shown.
                var brainMass = data.brainMass.toNumber( 'gwt' );
                var cerebralMetabolicRateFactor = data.cerebralMetabolicRateFactor.toNumber();
                return cerebralMetabolicRateFactor * 3 * brainMass / 100;
            }
        },
        cerebralMetabolicRateGlucose: {
            name: 'Cerebral metabolic rate (Glucose)',
            abbreviation: 'CMR<sub>glu</sub>',
            data: {
                calculations: {
                    required: [ 'brainMass', 'cerebralMetabolicRateFactor' ]
                }
            },
            units: 'mg/min',
            description: '<ul><li>5 mg glucose/min per 100g of brain mass</li><li>7% change in CMR for every 1 &deg;C change in temperature</li></ul>',
            references: [
                'Tameem A, Krovvidi H, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001'
            ],
            calculate: function( data ) {
                var brainMass = data.brainMass.toNumber( 'gwt' );
                var cerebralMetabolicRateFactor = data.cerebralMetabolicRateFactor.toNumber();
                return cerebralMetabolicRateFactor * 5 * brainMass / 100;
             }
             }
         },
         },
Line 657: Line 586:
             data: {
             data: {
                 calculations: {
                 calculations: {
                     required: [ 'brainMass' ]
                     required: [ 'brainMass', 'cerebralMetabolicRateFactor' ]
                 },
                 },
                 variables: {
                 variables: {
Line 664: Line 593:
             },
             },
             units: 'mL/min',
             units: 'mL/min',
             description: '50 mL/min per 100g of brain mass',
             description: '<ul><li>50 mL/min per 100g of brain mass.</li><li>Every mmHg in PaCO2 changes CBF by 1.5 mL/min per 100g of brain mass.</li><li>Cerebral blood flow and cerebral metabolic rate are coupled. Factors that alter CMR (e.g. temperature) will proportionally alter CBF.</li>',
             references: [
             references: [
                 'Alifia Tameem, Hari Krovvidi, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001',
                 'Tameem A, Krovvidi H, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001',
                 'Brian JE Jr. Carbon dioxide and the cerebral circulation. Anesthesiology. 1998 May;88(5):1365-86. doi: 10.1097/00000542-199805000-00029. PMID: 9605698.'
                 'Brian JE Jr. Carbon dioxide and the cerebral circulation. Anesthesiology. 1998 May;88(5):1365-86. doi: 10.1097/00000542-199805000-00029. PMID: 9605698.'
             ],
             ],
             calculate: function( data ) {
             calculate: function( data ) {
                 var brainMass = data.brainMass.toNumber( 'gwt' );
                 var brainMass = data.brainMass.toNumber( 'gwt' );
                var cerebralMetabolicRateFactor = data.cerebralMetabolicRateFactor.toNumber();
                 var paCO2 = data.paCO2.toNumber( 'mmHg' );
                 var paCO2 = data.paCO2.toNumber( 'mmHg' );


                 var cerebralBloodFlow = 50 * brainMass / 100;
                 var cerebralBloodFlow = cerebralMetabolicRateFactor * 50 * brainMass / 100;


                 if( paCO2 ) {
                 if( paCO2 ) {
Line 686: Line 616:
                 return cerebralBloodFlow;
                 return cerebralBloodFlow;
             }
             }
         },
         }
         cerebralMetabolicRateO2: {
    } );
             name: 'Cerebral metabolic rate (O<sub>2</sub>)',
 
             abbreviation: 'CMRO<sub>2</sub>',
 
 
    // Pulmonary
    mw.calculators.addCalculations( {
         paO2Predicted: {
             name: 'PaO<sub>2</sub> (predicted)',
             abbreviation: 'PaO<sub>2</sub> pred.',
             data: {
             data: {
                 calculations: {
                 variables: {
                     required: [ 'brainMass' ]
                     required: [ 'pAtm', 'fiO2', 'paCO2' ]
                 }
                 }
             },
             },
             units: 'mL/min',
             units: 'mmHg',
             description: '3 mL O<sub>2</sub>/min per 100g of brain mass',
             formula: '<math>P_{aO_2Predicted} = FiO_2*(P_{atm}-P_{H_{2}O})-\\frac{P_{aCO_2}}{R}</math>',
             references: [
             references: [
                 'Alifia Tameem, Hari Krovvidi, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001'
                 'McFarlane MJ, Imperiale TF. Use of the alveolar-arterial oxygen gradient in the diagnosis of pulmonary embolism. Am J Med. 1994 Jan;96(1):57-62. doi: 10.1016/0002-9343(94)90116-3. PMID: 8304364.'
             ],
             ],
             calculate: function( data ) {
             calculate: function( data ) {
                 var brainMass = data.brainMass.toNumber( 'gwt' );
                 var fiO2 = data.fiO2.toNumber( 'pcto2' ) / 100;
                var pAtm = data.pAtm.toNumber( 'mmHg' );
                var pH2O = 47; // mmHg
                var paCO2 = data.paCO2.toNumber( 'mmHg' );
                var r = 0.8;


                 return 3 * brainMass / 100;
                 return fiO2 * ( pAtm - pH2O ) - paCO2 / r;
             }
             }
         },
         },
         cerebralMetabolicRateGlucose: {
         aaGradientO2: {
             name: 'Cerebral metabolic rate (Glucose)',
             name: 'A-a O<sub>2</sub> gradient',
             abbreviation: 'CMR<sub>glu</sub>',
             abbreviation: 'A-a O<sub>2</sub>',
             data: {
             data: {
                 calculations: {
                 calculations: {
                     required: [ 'brainMass' ]
                     required: [ 'paO2Predicted' ]
                },
                variables: {
                    required: [ 'paO2' ]
                 }
                 }
             },
             },
             units: 'mg/min',
             units: 'mmHg',
             description: '5 mg glucose/min per 100g of brain mass',
             formula: '<math>\\text{A-a gradient}_{\\mathrm{O}_2} = P_{aO_2Predicted}-P_{aO_2} </math>',
             references: [
             references: [
                 'Alifia Tameem, Hari Krovvidi, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001'
                 'McFarlane MJ, Imperiale TF. Use of the alveolar-arterial oxygen gradient in the diagnosis of pulmonary embolism. Am J Med. 1994 Jan;96(1):57-62. doi: 10.1016/0002-9343(94)90116-3. PMID: 8304364.'
             ],
             ],
             calculate: function( data ) {
             calculate: function( data ) {
                 var brainMass = data.brainMass.toNumber( 'gwt' );
                 var paO2Predicted = data.paO2Predicted.toNumber( 'mmHg' );
                var paO2 = data.paO2.toNumber( 'mmHg' );


                 return 5 * brainMass / 100;
                 return math.round( paO2Predicted - paO2 );
             }
             }
         }
         },
    } );
         aaGradientO2Predicted: {
 
             name: 'A-a O<sub>2</sub> gradient (predicted)',
    var tableMaxWidth = 600;
             abbreviation: 'A-a O<sub>2</sub> pred.',
 
            data: {
    mw.calculators.addCalculators( moduleId, {
                 variables: {
         anatomy: {
                    required: [ 'age' ]
             name: 'Patient statistics',
                 }
             calculations: [
                'bmi',
                'bsa',
                 'ibw',
                'lbw'
            ],
            css: {
                 'max-width': tableMaxWidth
             },
             },
             table: true
             units: 'mmHg',
        },
             formula: '<math>\\text{Predicted A-a gradient}_{\\mathrm{O}_2} = \\frac{(\\mathrm{age_{yr} + 10)}}{4}</math>',
        fluidManagement: {
             references: [
             name: 'Fluid management',
                 'Hantzidiamantis PJ, Amaro E. Physiology, Alveolar to Arterial Oxygen Gradient. 2021 Feb 22. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–. PMID: 31424737.'
             calculations: [
                 'fluidMaintenanceRate',
                'intraopFluids',
                'ebv',
                'maxAbl',
                'minUop'
             ],
             ],
             css: {
             calculate: function( data ) {
                 'max-width': tableMaxWidth
                 var age = data.age.toNumber( 'yr' );
             },
 
            table: true
                return ( age + 10 ) / 4;
             }
         },
         },
         cardiovascular: {
         weightBasedTidalVolume: {
             name: 'Cardiovascular',
             name: 'Weight-based tidal volume',
             calculations: [
             abbreviation: 'Weight-based TV',
                'vO2',
            data: {
                 'cardiacOutputFick',
                 calculations: {
                 'cardiacIndex',
                    required: [ 'ibw' ]
                'strokeVolume'
                },
            ],
                 variables: {
            css: {
                    required: [ 'weightBasedTidalVolumePerKgMin', 'weightBasedTidalVolumePerKgMax' ]
                 'max-width': tableMaxWidth
                 }
             },
             },
             table: true
             type: 'string',
        },
             description: '<ul><li>Calculated using ideal body weight</li><li>Low tidal volume uses 6-8 mL/kg<sup>1</sup><ul><li>Current evidence does not show benefit of intraoperative low tidal volumes for patients without pulmonary injury<sup>2</sup></li></ul></li>',
        neuro: {
             references: [
             name: 'Neuro',
                 'Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. doi: 10.1056/NEJM200005043421801. PMID: 10793162.',
             calculations: [
                 'Karalapillai D, Weinberg L, Peyton P, Ellard L, Hu R, Pearce B, Tan CO, Story D, O\'Donnell M, Hamilton P, Oughton C, Galtieri J, Wilson A, Serpa Neto A, Eastwood G, Bellomo R, Jones DA. Effect of Intraoperative Low Tidal Volume vs Conventional Tidal Volume on Postoperative Pulmonary Complications in Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA. 2020 Sep 1;324(9):848-858. doi: 10.1001/jama.2020.12866. PMID: 32870298; PMCID: PMC7489812.'
                 'brainMass',
                 'cerebralBloodVolume',
                'cerebralBloodFlow',
                'cerebralMetabolicRateO2',
                'cerebralMetabolicRateGlucose'
             ],
             ],
             css: {
             calculate: function( data ) {
                 'max-width': tableMaxWidth
                 var ibw = data.ibw.toNumber( 'kgwt' );
             },
                var weightBasedTidalVolumePerKgMin = data.weightBasedTidalVolumePerKgMin.toNumber( 'mL/kgwt' );
            table: true
                var weightBasedTidalVolumePerKgMax = data.weightBasedTidalVolumePerKgMax.toNumber( 'mL/kgwt' );
 
                return math.round( weightBasedTidalVolumePerKgMin * ibw ) + '-' + math.round( weightBasedTidalVolumePerKgMax * ibw ) + ' mL';
             }
         }
         }
     } );
     } );
}() );
}() );

Latest revision as of 06:27, 19 March 2022

( function() {
    mw.calculators.addUnitsBases( {
        bpm: {
            toString: function( units ) {
                units = units.replace( 'bpm', 'beats/min' );

                return units;
            }
        },
        hgb: {
            toString: function( units ) {
                units = units.replace( 'hgbperdL', '/dL' );
                units = units.replace( /\s?pcthct/, '%' );

                return units;
            }
        },
        o2: {
            toString: function( units ) {
                units = units.replace( /\s?pcto2/, '%' );

                return units;
            }
        },
        temperature: {
            toString: function( units ) {
                units = units.replace( 'deg', '&deg;' );

                return units;
            }
        }
    } );

    mw.calculators.addUnits( {
        bpm: {
            baseName: 'bpm'
        },
        pcthct: {
            baseName: 'hgb'
        },
        pcto2: {
            baseName: 'o2'
        },
        ghgbperdL: {
            baseName: 'hgb',
            prefixes: 'short',
            definition: '3 pcthct'
        }
    } );

    mw.calculators.addVariables( {
        fiO2: {
            name: 'FiO<sub>2</sub>',
            type: 'number',
            abbreviation: 'FiO<sub>2</sub>',
            minValue: '10 pcto2',
            maxValue: '100 pcto2',
            defaultValue: '21 pcto2',
            maxLength: 3,
            units: [
                'pcto2'
            ]
        },
        heartRate: {
            name: 'Heart rate',
            type: 'number',
            abbreviation: 'HR',
            defaultValue: '60 bpm',
            maxLength: 4,
            units: [
                'bpm'
            ]
        },
        hgb: {
            name: 'Hemoglobin/hematocrit',
            type: 'number',
            abbreviation: 'HgB',
            minValue: '3 ghgbperdL',
            maxValue: '25 ghgbperdL',
            defaultValue: '13 ghgbperdL',
            maxLength: 4,
            units: [
                'pcthct',
                'ghgbperdL'
            ]
        },
        paCO2: {
            name: 'PaCO<sub>2</sub>',
            type: 'number',
            abbreviation: 'PaCO<sub>2</sub>',
            minValue: '20 mmHg',
            defaultValue: '40 mmHg',
            maxLength: 3,
            units: [
                'mmHg'
            ]
        },
        paO2: {
            name: 'PaO<sub>2</sub>',
            type: 'number',
            abbreviation: 'PaO<sub>2</sub>',
            minValue: '25 mmHg',
            defaultValue: '100 mmHg',
            maxLength: 3,
            units: [
                'mmHg'
            ]
        },
        pAtm: {
            name: 'Atmospheric pressure',
            type: 'number',
            abbreviation: 'P<sub>atm</sub>',
            minValue: '0 mmHg',
            defaultValue: '760 mmHg',
            maxLength: 4,
            units: [
                'mmHg'
            ]
        },
        saO2: {
            name: 'SaO<sub>2</sub>',
            type: 'number',
            abbreviation: 'SaO<sub>2</sub>',
            minValue: '25 pcto2',
            maxValue: '100 pcto2',
            defaultValue: '100 pcto2',
            maxLength: 3,
            units: [
                'pcto2'
            ]
        },
        smvO2: {
            name: 'SmvO<sub>2</sub>',
            type: 'number',
            abbreviation: 'SmvO<sub>2</sub>',
            minValue: '25 pcto2',
            maxValue: '100 pcto2',
            defaultValue: '75 pcto2',
            maxLength: 3,
            units: [
                'pcto2'
            ]
        },
        raceSpirometry: {
            name: 'Race',
            type: 'string',
            abbreviation: 'Race',
            defaultValue: 'unknown',
            options: {
                unknown: 'Unknown',
                black: 'Black',
                caucasian: 'Caucasian',
                mexican: 'Mexican-American'
            }
        },
        temperature: {
            name: 'Temperature',
            type: 'number',
            abbreviation: 'Temp',
            minValue: '20 degC',
            maxValue: '44 degC',
            defaultValue: '37 degC',
            maxLength: 5,
            units: [
                'degC',
                'degF'
            ]
        },
        weightBasedTidalVolumePerKgMin: {
            name: 'Minimum tidal volume',
            type: 'number',
            abbreviation: 'Min TV',
            minValue: '3 mL/kgwt',
            maxValue: '12 mL/kgwt',
            defaultValue: '6 mL/kgwt',
            maxLength: 2,
            units: [
                'mL/kgwt'
            ]
        },
        weightBasedTidalVolumePerKgMax: {
            name: 'Maximum tidal volume',
            type: 'number',
            abbreviation: 'Max TV',
            minValue: '3 mL/kgwt',
            maxValue: '12 mL/kgwt',
            defaultValue: '8 mL/kgwt',
            maxLength: 2,
            units: [
                'mL/kgwt'
            ]
        }
    } );

    // Force re-render of ibw and lbw. This is necessary to remove the additional inputs for patient variables from the
    // calculation which are now provided by the patient input toolbar.
    mw.calculators.calculations.ibw.render();
    mw.calculators.calculations.lbw.render();

    mw.calculators.addCalculations( {
        bmi: {
            name: 'Body mass index',
            abbreviation: 'BMI',
            data: {
                variables: {
                    required: [ 'weight', 'height' ]
                }
            },
            digits: 0,
            units: 'kg/m^2',
            formula: '<math>\\mathrm{BMI} = \\frac{\\mathrm{mass_{kg}}}{{(\\mathrm{height_{m}}})^2}</math>',
            link: '[[Body mass index]]',
            references: [],
            calculate: function( data ) {
                return data.weight.toNumber( 'kgwt' ) / Math.pow( data.height.toNumber( 'm' ), 2 );
            }
        },
        bsa: {
            name: 'Body surface area',
            abbreviation: 'BSA',
            data: {
                variables: {
                    required: [ 'weight', 'height' ]
                }
            },
            digits: 2,
            units: 'm^2',
            formula: '<math>\\mathrm{BSA} = \\sqrt{\\frac{\\mathrm{weight_{kg}}*\\mathrm{height_{cm}}}{3600}}</math>',
            link: false,
            references: [
                'Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987 Oct 22;317(17):1098. doi: 10.1056/NEJM198710223171717. PMID: 3657876.'
            ],
            calculate: function( data ) {
                return Math.sqrt( data.height.toNumber( 'cm' ) * data.weight.toNumber( 'kgwt' ) / 3600 );
            }
        },
        systolicBloodPressure: {
            name: 'Systolic blood pressure',
            abbreviation: 'SBP',
            data: {
                variables: {
                    required: [ 'age' ]
                }
            },
            type: 'string',
            references: [
                'Baby Miller 6e, ch. 16, pg. 550'
            ],
            calculate: function( data ) {
                var age = data.age.toNumber( 'yo' );

                var systolicMin, systolicMax, diastolicMin, diastolicMax, meanMin, meanMax;

                if( age >= 16 ) {
                    systolicMin = 100;
                    systolicMax = 125;
                } else if( age >= 13 ) {
                    systolicMin = 95;
                    systolicMax = 120;
                } else if( age >= 9 ) {
                    systolicMin = 90;
                    systolicMax = 115;
                } else if( age >= 6 ) {
                    systolicMin = 85;
                    systolicMax = 105;
                } else if( age >= 3 ) {
                    systolicMin = 80;
                    systolicMax = 100;
                } else if( age >= 1 ) {
                    systolicMin = 75;
                    systolicMax = 95;
                } else if( age >= 6 / 12 ) {
                    systolicMin = 70;
                    systolicMax = 90;
                } else if( age >= 1 / 12 ) {
                    systolicMin = 65;
                    systolicMax = 85;
                } else {
                    systolicMin = 60;
                    systolicMax = 75;
                }
            }
        }
    } );

    // Cardiovascular
    mw.calculators.addCalculations( {
        vO2: {
            name: 'Rate of oxygen consumption (VO<sub>2</sub>)',
            abbreviation: 'VO<sub>2</sub>',
            data: {
                calculations: {
                    required: [ 'bsa' ]
                },
                variables: {
                    optional: [ 'age' ]
                }
            },
            units: 'mL/min',
            formula: '<math>\\mathrm{VO_2} = \\begin{cases} 125 * \\mathrm{BSA}  & \\text{if age} < 70 \\\\ 110 * \\mathrm{BSA} & \\text{if age} \\geq 70 \\end{cases}</math>',
            references: [],
            calculate: function( data ) {
                var bsa = data.bsa.toNumber();
                var age = data.age ? data.age.toNumber( 'yr' ) : null;

                if( age < 70 ) {
                    return 125 * bsa;
                } else {
                    return 110 * bsa;
                }
            }
        },
        cardiacOutputFick: {
            name: 'Cardiac output (Fick)',
            abbreviation: 'CO (Fick)',
            data: {
                variables: {
                    required: [ 'saO2', 'smvO2', 'hgb' ]
                },
                calculations: {
                    required: [ 'vO2' ]
                }
            },
            units: 'L/min',
            formula: '<math>\\mathrm{CO_{Fick}}=\\frac{\\mathrm{VO_2}}{(\\mathrm{S_aO_2} - \\mathrm{S_{mv}O_2}) * H_b * 13.4}</math>',
            link: false,
            references: [],
            calculate: function( data ) {
                var vO2 = data.vO2.toNumber( 'mL/min' );
                var saO2 = data.saO2.toNumber() / 100;
                var smvO2 = data.smvO2.toNumber() / 100;
                var hgb = data.hgb.toNumber( 'ghgbperdL' );

                return vO2 / ( ( saO2 - smvO2 ) * hgb * 13.4 );
            }
        },
        cardiacIndex: {
            name: 'Cardiac index',
            abbreviation: 'CI',
            data: {
                calculations: {
                    required: [ 'bsa', 'cardiacOutputFick' ]
                }
            },
            units: 'L/min/m^2',
            formula: '<math>\\mathrm{CI}=\\frac{\\mathrm{CO}}{\\mathrm{BSA}}</math>',
            link: false,
            references: [],
            calculate: function( data ) {
                var cardiacOutput = data.cardiacOutputFick.toNumber( 'L/min' );
                var bsa = data.bsa.toNumber( 'm^2' );

                return cardiacOutput / bsa;
            }
        },
        strokeVolume: {
            name: 'Stroke volume',
            abbreviation: 'SV',
            data: {
                variables: {
                    required: [ 'heartRate' ]
                },
                calculations: {
                    required: [ 'cardiacOutputFick' ]
                }
            },
            units: 'mL',
            formula: '<math>\\mathrm{SV}=\\frac{\\mathrm{CO}}{\\mathrm{HR}}</math>',
            link: false,
            references: [],
            calculate: function( data ) {
                var cardiacOutput = data.cardiacOutputFick.toNumber( 'mL/min' );
                var heartRate = data.heartRate.toNumber();

                return cardiacOutput / heartRate;
            }
        }
    } );

    // Neuro
    mw.calculators.addCalculations( {
        brainMass: {
            name: 'Brain mass',
            data: {
                variables: {
                    optional: [ 'age', 'gender' ]
                }
            },
            digits: 0,
            units: 'gwt',
            description: 'This calculation will give a more precise estimate of brain mass if age and/or gender are provided.',
            references: [
                'Dekaban AS. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978 Oct;4(4):345-56. doi: 10.1002/ana.410040410. PMID: 727739.'
            ],
            calculate: function( data ) {
                var age = data.age ? data.age.toNumber( 'yr' ) : null;
                var gender = data.gender ? data.gender : null;

                var brainMassFemale = 1290;
                var brainMassMale = 1450;

                if( age !== null ) {
                    if( age <= 10 / 365 ) {
                        // <=10 days
                        brainMassFemale = 360;
                        brainMassMale = 380;
                    } else if( age <= 4 * 30 / 365 ) {
                        // Less than 4 months. This is a gap in the reported data of the paper, so linearly interpolate?
                        var ageFactor = 1 - ( 4 * 30 / 365 - age ) / ( 4 * 30 / 365 - 10 / 365 );

                        brainMassFemale = 360 + ageFactor * ( 580 - 360 );
                        brainMassMale = 380 + ageFactor * ( 640 - 380 );
                    } else if( age <= 8 * 30 / 365 ) {
                        // <=8 months
                        brainMassFemale = 580;
                        brainMassMale = 640;
                    } else if( age <= 18 * 30 / 365 ) {
                        // <=18 months
                        brainMassFemale = 940;
                        brainMassMale = 970;
                    } else if( age <= 30 * 30 / 365 ) {
                        // <=30 months
                        brainMassFemale = 1040;
                        brainMassMale = 1120;
                    } else if( age <= 43 * 30 / 365 ) {
                        // <=43 months
                        brainMassFemale = 1090;
                        brainMassMale = 1270;
                    } else if( age <= 5 ) {
                        brainMassFemale = 1150;
                        brainMassMale = 1300;
                    } else if( age <= 7 ) {
                        brainMassFemale = 1210;
                        brainMassMale = 1330;
                    } else if( age <= 9 ) {
                        brainMassFemale = 1180;
                        brainMassMale = 1370;
                    } else if( age <= 12 ) {
                        brainMassFemale = 1260;
                        brainMassMale = 1440;
                    } else if( age <= 15 ) {
                        brainMassFemale = 1280;
                        brainMassMale = 1410;
                    } else if( age <= 18 ) {
                        brainMassFemale = 1340;
                        brainMassMale = 1440;
                    } else if( age <= 21 ) {
                        brainMassFemale = 1310;
                        brainMassMale = 1450;
                    } else if( age <= 30 ) {
                        brainMassFemale = 1300;
                        brainMassMale = 1440;
                    } else if( age <= 40 ) {
                        brainMassFemale = 1290;
                        brainMassMale = 1440;
                    } else if( age <= 50 ) {
                        brainMassFemale = 1290;
                        brainMassMale = 1430;
                    } else if( age <= 55 ) {
                        brainMassFemale = 1280;
                        brainMassMale = 1410;
                    } else if( age <= 60 ) {
                        brainMassFemale = 1250;
                        brainMassMale = 1370;
                    } else if( age <= 65 ) {
                        brainMassFemale = 1240;
                        brainMassMale = 1370;
                    } else if( age <= 70 ) {
                        brainMassFemale = 1240;
                        brainMassMale = 1360;
                    } else if( age <= 75 ) {
                        brainMassFemale = 1230;
                        brainMassMale = 1350;
                    } else if( age <= 80 ) {
                        brainMassFemale = 1190;
                        brainMassMale = 1330;
                    } else if( age <= 85 ) {
                        brainMassFemale = 1170;
                        brainMassMale = 1310;
                    } else {
                        brainMassFemale = 1140;
                        brainMassMale = 1290;
                    }
                }

                if( gender === 'F' ) {
                    return brainMassFemale;
                } else if( gender === 'M' ) {
                    return brainMassMale;
                } else {
                    return ( brainMassFemale + brainMassMale ) / 2;
                }
            }
        },
        cerebralBloodVolume: {
            name: 'Cerebral blood volume',
            abbreviation: 'CBV',
            data: {
                calculations: {
                    required: [ 'brainMass' ]
                }
            },
            units: 'mL',
            description: '4 mL per 100g of brain mass',
            references: [
                'Tameem A, Krovvidi H, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001'
            ],
            calculate: function( data ) {
                var brainMass = data.brainMass.toNumber( 'gwt' );

                return 4 * brainMass / 100;
            }
        },
        cerebralMetabolicRateFactor: {
            name: 'Cerebral metabolic rate factor',
            abbreviation: '%CMR',
            data: {
                variables: {
                    optional: [ 'temperature' ]
                }
            },
            description: '7% change in CMR for every 1 &deg;C change in temperature',
            references: [
                'Tameem A, Krovvidi H, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001'
            ],
            calculate: function( data ) {
                var temperature = data.temperature ? data.temperature.toNumber( 'degC' ) : null;

                var cerebralMetabolicRateFactor = 1;

                if( temperature ) {
                    cerebralMetabolicRateFactor += 0.07 * ( temperature - 37 );
                }

                return cerebralMetabolicRateFactor;
            }
        },
        cerebralMetabolicRateO2: {
            name: 'Cerebral metabolic rate (O<sub>2</sub>)',
            abbreviation: 'CMRO<sub>2</sub>',
            data: {
                calculations: {
                    required: [ 'brainMass', 'cerebralMetabolicRateFactor' ]
                },
                variables: {
                    optional: [ 'temperature' ]
                }
            },
            units: 'mL/min',
            description: '<ul><li>3 mL O<sub>2</sub>/min per 100g of brain mass</li><li>If temperature is provided, adjusts estimate using 7% change in CMR for every 1 &deg;C change in temperature</li></ul>',
            references: [
                'Tameem A, Krovvidi H, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001'
            ],
            calculate: function( data ) {
                // Temperature is included as an optional variable to generate the input.
                // It is used by cerebralMetabolicRateFactor, which is an internal calculation not typically shown.
                var brainMass = data.brainMass.toNumber( 'gwt' );
                var cerebralMetabolicRateFactor = data.cerebralMetabolicRateFactor.toNumber();

                return cerebralMetabolicRateFactor * 3 * brainMass / 100;
            }
        },
        cerebralMetabolicRateGlucose: {
            name: 'Cerebral metabolic rate (Glucose)',
            abbreviation: 'CMR<sub>glu</sub>',
            data: {
                calculations: {
                    required: [ 'brainMass', 'cerebralMetabolicRateFactor' ]
                }
            },
            units: 'mg/min',
            description: '<ul><li>5 mg glucose/min per 100g of brain mass</li><li>7% change in CMR for every 1 &deg;C change in temperature</li></ul>',
            references: [
                'Tameem A, Krovvidi H, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001'
            ],
            calculate: function( data ) {
                var brainMass = data.brainMass.toNumber( 'gwt' );
                var cerebralMetabolicRateFactor = data.cerebralMetabolicRateFactor.toNumber();

                return cerebralMetabolicRateFactor * 5 * brainMass / 100;
            }
        },
        cerebralBloodFlow: {
            name: 'Cerebral blood flow',
            abbreviation: 'CBF',
            data: {
                calculations: {
                    required: [ 'brainMass', 'cerebralMetabolicRateFactor' ]
                },
                variables: {
                    optional: [ 'paCO2' ]
                }
            },
            units: 'mL/min',
            description: '<ul><li>50 mL/min per 100g of brain mass.</li><li>Every mmHg in PaCO2 changes CBF by 1.5 mL/min per 100g of brain mass.</li><li>Cerebral blood flow and cerebral metabolic rate are coupled. Factors that alter CMR (e.g. temperature) will proportionally alter CBF.</li>',
            references: [
                'Tameem A, Krovvidi H, Cerebral physiology, Continuing Education in Anaesthesia Critical Care & Pain, Volume 13, Issue 4, August 2013, Pages 113–118, https://doi.org/10.1093/bjaceaccp/mkt001',
                'Brian JE Jr. Carbon dioxide and the cerebral circulation. Anesthesiology. 1998 May;88(5):1365-86. doi: 10.1097/00000542-199805000-00029. PMID: 9605698.'
            ],
            calculate: function( data ) {
                var brainMass = data.brainMass.toNumber( 'gwt' );
                var cerebralMetabolicRateFactor = data.cerebralMetabolicRateFactor.toNumber();
                var paCO2 = data.paCO2.toNumber( 'mmHg' );

                var cerebralBloodFlow = cerebralMetabolicRateFactor * 50 * brainMass / 100;

                if( paCO2 ) {
                    // CO2 reductions don't reduce CBF more than 50%
                    var minCerebralBloodFlow = cerebralBloodFlow / 2;

                    cerebralBloodFlow += 1.5 * brainMass / 100 * ( paCO2 - 40 );

                    cerebralBloodFlow = math.max( cerebralBloodFlow, minCerebralBloodFlow );
                }

                return cerebralBloodFlow;
            }
        }
    } );



    // Pulmonary
    mw.calculators.addCalculations( {
        paO2Predicted: {
            name: 'PaO<sub>2</sub> (predicted)',
            abbreviation: 'PaO<sub>2</sub> pred.',
            data: {
                variables: {
                    required: [ 'pAtm', 'fiO2', 'paCO2' ]
                }
            },
            units: 'mmHg',
            formula: '<math>P_{aO_2Predicted} = FiO_2*(P_{atm}-P_{H_{2}O})-\\frac{P_{aCO_2}}{R}</math>',
            references: [
                'McFarlane MJ, Imperiale TF. Use of the alveolar-arterial oxygen gradient in the diagnosis of pulmonary embolism. Am J Med. 1994 Jan;96(1):57-62. doi: 10.1016/0002-9343(94)90116-3. PMID: 8304364.'
            ],
            calculate: function( data ) {
                var fiO2 = data.fiO2.toNumber( 'pcto2' ) / 100;
                var pAtm = data.pAtm.toNumber( 'mmHg' );
                var pH2O = 47; // mmHg
                var paCO2 = data.paCO2.toNumber( 'mmHg' );
                var r = 0.8;

                return fiO2 * ( pAtm - pH2O ) - paCO2 / r;
            }
        },
        aaGradientO2: {
            name: 'A-a O<sub>2</sub> gradient',
            abbreviation: 'A-a O<sub>2</sub>',
            data: {
                calculations: {
                    required: [ 'paO2Predicted' ]
                },
                variables: {
                    required: [ 'paO2' ]
                }
            },
            units: 'mmHg',
            formula: '<math>\\text{A-a gradient}_{\\mathrm{O}_2} = P_{aO_2Predicted}-P_{aO_2} </math>',
            references: [
                'McFarlane MJ, Imperiale TF. Use of the alveolar-arterial oxygen gradient in the diagnosis of pulmonary embolism. Am J Med. 1994 Jan;96(1):57-62. doi: 10.1016/0002-9343(94)90116-3. PMID: 8304364.'
            ],
            calculate: function( data ) {
                var paO2Predicted = data.paO2Predicted.toNumber( 'mmHg' );
                var paO2 = data.paO2.toNumber( 'mmHg' );

                return math.round( paO2Predicted - paO2 );
            }
        },
        aaGradientO2Predicted: {
            name: 'A-a O<sub>2</sub> gradient (predicted)',
            abbreviation: 'A-a O<sub>2</sub> pred.',
            data: {
                variables: {
                    required: [ 'age' ]
                }
            },
            units: 'mmHg',
            formula: '<math>\\text{Predicted A-a gradient}_{\\mathrm{O}_2} = \\frac{(\\mathrm{age_{yr} + 10)}}{4}</math>',
            references: [
                'Hantzidiamantis PJ, Amaro E. Physiology, Alveolar to Arterial Oxygen Gradient. 2021 Feb 22. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–. PMID: 31424737.'
            ],
            calculate: function( data ) {
                var age = data.age.toNumber( 'yr' );

                return ( age + 10 ) / 4;
            }
        },
        weightBasedTidalVolume: {
            name: 'Weight-based tidal volume',
            abbreviation: 'Weight-based TV',
            data: {
                calculations: {
                    required: [ 'ibw' ]
                },
                variables: {
                    required: [ 'weightBasedTidalVolumePerKgMin', 'weightBasedTidalVolumePerKgMax' ]
                }
            },
            type: 'string',
            description: '<ul><li>Calculated using ideal body weight</li><li>Low tidal volume uses 6-8 mL/kg<sup>1</sup><ul><li>Current evidence does not show benefit of intraoperative low tidal volumes for patients without pulmonary injury<sup>2</sup></li></ul></li>',
            references: [
                'Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. doi: 10.1056/NEJM200005043421801. PMID: 10793162.',
                'Karalapillai D, Weinberg L, Peyton P, Ellard L, Hu R, Pearce B, Tan CO, Story D, O\'Donnell M, Hamilton P, Oughton C, Galtieri J, Wilson A, Serpa Neto A, Eastwood G, Bellomo R, Jones DA. Effect of Intraoperative Low Tidal Volume vs Conventional Tidal Volume on Postoperative Pulmonary Complications in Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA. 2020 Sep 1;324(9):848-858. doi: 10.1001/jama.2020.12866. PMID: 32870298; PMCID: PMC7489812.'
            ],
            calculate: function( data ) {
                var ibw = data.ibw.toNumber( 'kgwt' );
                var weightBasedTidalVolumePerKgMin = data.weightBasedTidalVolumePerKgMin.toNumber( 'mL/kgwt' );
                var weightBasedTidalVolumePerKgMax = data.weightBasedTidalVolumePerKgMax.toNumber( 'mL/kgwt' );

                return math.round( weightBasedTidalVolumePerKgMin * ibw ) + '-' + math.round( weightBasedTidalVolumePerKgMax * ibw ) + ' mL';
            }
        }
    } );
}() );